Induksi Matematika (Matematika Diskret)


INDUKSI MATEMATIKA

Induksi matematika (mathematical induction) adalah metode pembuktian yang sering digunakan untuk menentukan kebenaran dari suatu pernyataan yang diberikan dalam bentuk bilangan asli. Akan tetapi sebelum membahas mengenai induksi matematika, kita akan membahas suatu prinsip yang digunakan untuk membuktikan induksi matematika, yaitu prinsip terurut rapi (well-ordering principle) dari bilangan asli. Seperti kita ketahui, himpunan bilangan asli adalah himpunan yang memiliki anggota 1, 2, 3, … yang dapat dituliskan sebagai berikut. 

N = {1,2,3,..}

Lalu,Bagaimana dengan n=6? Gampang, tinggal kita hitung aja lagi begini:

1+2+3+4+5+6 = 21.

  Prinsip Induksi Sederhana
Misalkan p(n) adalah proposisi bilangan bulat positif dan ingin dibuktikan bahwa p(n) adalah benar untuk semua bilangan bulat positif n. Maka langkah-langkahnya adalah sebagai berikut :
·       n  p(n) benar
·       n  Jika p(n) benar, maka p(n+1) juga benar untuk setiap n ³ 1
Sehingga p(n) benar untuk semua bilangan bulat positif n.
Contoh :
Tunjukkan bahwa untuk n ³ 1, 1+2+3+…+n = n(n+1)/2 melalui induksi matematika
: 1+2+3+…+n+(n+1) = (1+2+3+…+n)+(n+1)
                                = [n(n+1)/2]+(n+1)
                                = [(n2+n)/2]+(n+1)
                                = [(n2+n)/2]+[(2n+2)/2]
                                = (n2+3n+2)/2
                                = (n+1)(n+2)/2
                                = (n+1)[(n+1)+1]/2

Langkah (i) dan (ii) dibuktikan benar, maka untuk semua bilangan bulat positif n, terbukti bahwa untuk semua n ³ 1, 1+2+3+…+n = n(n+1)/2 .
Contoh soal :
Buktikan untuk setiap n anggota N, jumlah dari n bilangan asli pertama diberikan oleh rumus,

Bukti Kita akan mencoba membuktikan pernyataan di atas dengan Prinsip Induksi Matematika yang dibahas di awal. Misalkan S adalah himpunan yang memuat n anggota Nsedemikian sehingga rumus di atas bernilai benar. Kita harus menguji apakah kondisi (1) dan (2) pada Prinsip Induksi Matematika terpenuhi. Jika n = 1, maka 1 = 1/2 ∙ 1 ∙ (1 + 1) sehingga 1 anggota S, dan (1) terpenuhi. Selanjutnya, andaikan k anggota S maka kita akan menunjukkan k + 1 juga akan menjadi anggota S. Jika k angota S, maka

Jika kita menambahkan k + 1 pada persamaan di atas, maka akan diperoleh

Karena persamaan di atas merupakan pernyataan untuk n = k + 1, maka kita menyimpulkan bahwa k + 1 anggota S. Sehingga, kondisi (2) terpenuhi. Sebagai hasilnya, menurut Prinsi Induksi Matematika kita memperoleh bahwa S = N, atau dengan kata lain persamaan tersebut berlaku untuk semua bilangan asli.

Prinsip Terurut Rapi Bilangan Asli
Setiap himpunan bagian yang tidak kosong dari N memiliki anggota terkecil.

Prinsip Induksi Matematika
Misalkan S adalah himpunan bagian N yang memiliki 2 sifat:
(1) S memiliki anggota bilangan 1; dan
(2) Untuk setiap k anggota N, jika k anggota S, maka k + 1 anggota S.
Maka diperoleh S = N.

Komentar

Postingan Populer